Mínimo Múltiplo Comum Mínimo múltiplo comum 2. Publicidade na rádio O “spot” publicitário do “café da D. Paula” passa na rádio de 6 em 6 horas, enquanto que o do “Clube de vídeo de S. Lucas” passa de 9 em 9 horas. Na publicidade das 0 horas foram ouvidos dois anúncios em conjunto. Quando acontecerá isso novamente? Para resolver o problema vamos fazer um esquema. 0 Café 0 Clube de vídeo Observações:  A publicidade referente ao café, será ouvida novamente, às 6 da manhã; depois ao meio-dia; seguidamente às 18 horas (6 da tarde);…  Como o 0 é múltiplo de qualquer número não o vamos considerar, nem faria sentido, relativamente ao problema em causa. O menor dos múltiplos comuns de 6 e 9, diferente de 0, é 18. O que se pretende no problema?! R .: Os dois anúncios serão ouvidos de novo, em conjunto, às 18 horas. 6 18 24 18 9 27  múltiplos de 9  múltiplos de 6 … … 30 36 36 45 18 18 Mínimo múltiplo comum 12 Outro exemplo para estudares em casa 3. Podemos então concluir: 0 0 6 18 24 18 9 27 Múltiplos de 9  Múltiplos de 6  … … 30 36 36 45 O Mínimo Múltiplo Comum de dois ou mais números naturais é o menor múltiplo comum a todos eles . ( excluindo o zero) Escreve-se m.m.c. (a, b). m.m.c. (6,9)=18 m.m.c. (7,8) = ? Múltiplos de 7 Múltiplos de 8 Vamos praticar… m.m.c.(7,8) = 56 Então: Mínimo múltiplo comum = { 1, 2, 3, 4, 5, ... } 4. Máximo divisor comum 5. Passatempo na rádio Num programa de rádio vai ser feito um passatempo em que serão oferecidos a cada concorrente vencedor CDs e cassetes. Há 30 CDs e 25 cassetes para oferecer. Se todos os prémios forem iguais, quantos ouvintes poderão ganhar? Quantos CDs e cassetes recebem cada um? Assim, para resolver o problema, vamos determinar os divisores de 30 e de 25. CDs 1, 2, 3, 5 , 6, 10, 15, 30  divisores de 30 Cassetes 1, 5 , 25  divisores de 25 O maior divisor comum de 25 e 30 é 5 e escreve-se, m.d.c. (25, 30) = 5 R.: O número máximo de ouvintes que poderão ganhar o prémio é 5 e cada ouvinte vencedor receberá 5 cassetes e 6 CDs. Observação: Para que cada ouvinte receba o mesmo número de CDs e cassetes, o nº de ouvintes premiados tem de ser um divisor comum de 25 e 30. O que se pretende no problema?! Outro exemplo para estudares em casa. 6. Máximo divisor comum Qual o maior divisor comum a 20 e 24? Para responder à questão precisamos de… R.: O maior divisor comum é o 4. O máximo divisor comum de dois ou mais números naturais é o maior dos divisores comuns a todos eles . Escreve-se: m.d.c. (a, b). m.d.c. (20, 24) = 4.


Mínimo Múltiplo Comum

  1. Mínimo múltiplo comum
  2. 2. Publicidade na rádio O “spot” publicitário do “café da D. Paula” passa na rádio de 6 em 6 horas, enquanto que o do “Clube de vídeo de S. Lucas” passa de 9 em 9 horas. Na publicidade das 0 horas foram ouvidos dois anúncios em conjunto. Quando acontecerá isso novamente? Para resolver o problema vamos fazer um esquema. 0 Café 0 Clube de vídeo Observações:  A publicidade referente ao café, será ouvida novamente, às 6 da manhã; depois ao meio-dia; seguidamente às 18 horas (6 da tarde);…  Como o 0 é múltiplo de qualquer número não o vamos considerar, nem faria sentido, relativamente ao problema em causa. O menor dos múltiplos comuns de 6 e 9, diferente de 0, é 18. O que se pretende no problema?! R .: Os dois anúncios serão ouvidos de novo, em conjunto, às 18 horas. 6 18 24 18 9 27  múltiplos de 9  múltiplos de 6 … … 30 36 36 45 18 18 Mínimo múltiplo comum 12 Outro exemplo para estudares em casa
  3. 3. Podemos então concluir: 0 0 6 18 24 18 9 27 Múltiplos de 9  Múltiplos de 6  … … 30 36 36 45 O Mínimo Múltiplo Comum de dois ou mais números naturais é o menor múltiplo comum a todos eles . ( excluindo o zero) Escreve-se m.m.c. (a, b).   m.m.c. (6,9)=18 m.m.c. (7,8) = ? Múltiplos de 7 Múltiplos de 8 Vamos praticar… m.m.c.(7,8) = 56 Então: Mínimo múltiplo comum = { 1, 2, 3, 4, 5, ... }
  4. 4. Máximo divisor comum
  5. 5. Passatempo na rádio Num programa de rádio vai ser feito um passatempo em que serão oferecidos a cada concorrente vencedor CDs e cassetes. Há 30 CDs e 25 cassetes para oferecer. Se todos os prémios forem iguais, quantos ouvintes poderão ganhar? Quantos CDs e cassetes recebem cada um? Assim, para resolver o problema, vamos determinar os divisores de 30 e de 25. CDs 1, 2, 3, 5 , 6, 10, 15, 30  divisores de 30 Cassetes 1, 5 , 25  divisores de 25 O maior divisor comum de 25 e 30 é 5 e escreve-se, m.d.c. (25, 30) = 5 R.: O número máximo de ouvintes que poderão ganhar o prémio é 5 e cada ouvinte vencedor receberá 5 cassetes e 6 CDs. Observação: Para que cada ouvinte receba o mesmo número de CDs e cassetes, o nº de ouvintes premiados tem de ser um divisor comum de 25 e 30. O que se pretende no problema?! Outro exemplo para estudares em casa.
  6. 6. Máximo divisor comum Qual o maior divisor comum a 20 e 24? Para responder à questão precisamos de… R.: O maior divisor comum é o 4. O máximo divisor comum de dois ou mais números naturais é o maior dos divisores comuns a todos eles . Escreve-se: m.d.c. (a, b).   m.d.c. (20, 24) = 4.


















Mínimo Múltiplo Comum

  1. Mínimo múltiplo comum
  2. 2. Publicidade na rádio O “spot” publicitário do “café da D. Paula” passa na rádio de 6 em 6 horas, enquanto que o do “Clube de vídeo de S. Lucas” passa de 9 em 9 horas. Na publicidade das 0 horas foram ouvidos dois anúncios em conjunto. Quando acontecerá isso novamente? Para resolver o problema vamos fazer um esquema. 0 Café 0 Clube de vídeo Observações:  A publicidade referente ao café, será ouvida novamente, às 6 da manhã; depois ao meio-dia; seguidamente às 18 horas (6 da tarde);…  Como o 0 é múltiplo de qualquer número não o vamos considerar, nem faria sentido, relativamente ao problema em causa. O menor dos múltiplos comuns de 6 e 9, diferente de 0, é 18. O que se pretende no problema?! R .: Os dois anúncios serão ouvidos de novo, em conjunto, às 18 horas. 6 18 24 18 9 27  múltiplos de 9  múltiplos de 6 … … 30 36 36 45 18 18 Mínimo múltiplo comum 12 Outro exemplo para estudares em casa
  3. 3. Podemos então concluir: 0 0 6 18 24 18 9 27 Múltiplos de 9  Múltiplos de 6  … … 30 36 36 45 O Mínimo Múltiplo Comum de dois ou mais números naturais é o menor múltiplo comum a todos eles . ( excluindo o zero) Escreve-se m.m.c. (a, b).   m.m.c. (6,9)=18 m.m.c. (7,8) = ? Múltiplos de 7 Múltiplos de 8 Vamos praticar… m.m.c.(7,8) = 56 Então: Mínimo múltiplo comum = { 1, 2, 3, 4, 5, ... }
  4. 4. Máximo divisor comum
  5. 5. Passatempo na rádio Num programa de rádio vai ser feito um passatempo em que serão oferecidos a cada concorrente vencedor CDs e cassetes. Há 30 CDs e 25 cassetes para oferecer. Se todos os prémios forem iguais, quantos ouvintes poderão ganhar? Quantos CDs e cassetes recebem cada um? Assim, para resolver o problema, vamos determinar os divisores de 30 e de 25. CDs 1, 2, 3, 5 , 6, 10, 15, 30  divisores de 30 Cassetes 1, 5 , 25  divisores de 25 O maior divisor comum de 25 e 30 é 5 e escreve-se, m.d.c. (25, 30) = 5 R.: O número máximo de ouvintes que poderão ganhar o prémio é 5 e cada ouvinte vencedor receberá 5 cassetes e 6 CDs. Observação: Para que cada ouvinte receba o mesmo número de CDs e cassetes, o nº de ouvintes premiados tem de ser um divisor comum de 25 e 30. O que se pretende no problema?! Outro exemplo para estudares em casa.
  6. 6. Máximo divisor comum Qual o maior divisor comum a 20 e 24? Para responder à questão precisamos de… R.: O maior divisor comum é o 4. O máximo divisor comum de dois ou mais números naturais é o maior dos divisores comuns a todos eles . Escreve-se: m.d.c. (a, b).   m.d.c. (20, 24) = 4.